jueves, 5 de enero de 2012

Función del ángulo doble.

sen2α =  2senαcosα   Cuando  α = β

sen (α + β) = senα * cosβ + cosα * senβ.
cos (α + α ) = senα * cosα + cosα * senα.
sen2α =   2senαcosα                                              

Ejemplo:

 sen180° = sen (2*90) = 2sen90cos90 = 0

Cos2α = cos2α – sen2α   Cuando  α = β        
cos (α + β) = cosα * cosβ - senα * senβ.
cos (α + α ) = cosα * cosα - senα * senα.
Cos2α = cos2 α – sen2 α
cos2 120 – sen2 120
cos2 (2*60) – sen2 (2*60)
(cos260 – sen260)2 – (2sen60cos60)2
((√1/2)2 – (√3/2)2)2 – (2 * √3/2 * √1/2)2
(1/4 – 3/4)2 – 3/4
1/4 – 3/4 = -1/2

Tan2 α = sen2 α /cos2 α
Tan2 α = 2senα cosα / cos2α – sen2α
 Tan2 α = (2senα cosα / cos2α) / (cos2α – sen2α / cos2α)
Tan2 α = (2senα / cosα) / (1 – (sen2α / cos2α))       
Tan2 α = 2 tanα/ 1 – tan2α
















No hay comentarios:

Publicar un comentario